AAA and Network Security for Mobile Access in .NET

Draw datamatrix 2d barcode in .NET AAA and Network Security for Mobile Access
AAA and Network Security for Mobile Access
.net Vs 2010 data matrix 2d barcode scannerin .net
Using Barcode Control SDK for .net vs 2010 Control to generate, create, read, scan barcode image in .net vs 2010 applications.
negotiation and key exchange for secure client-wireless AP in a way that initially is hidden from the access point. This is explained in the next subsection and is especially useful if the client initially does not trust the AP and access network provider. Note that, EAP-TTLS supports the traditional TLS mutual authentication using client certificate as well, if so desired.
Data Matrix Barcodes generator with .net
generate, create barcode data matrix none on .net projects EAP-TTLS Functional Elements Aside from the reasons mentioned earlier, another main design criterion for EAP-TTLS is to support the establishment of secure connections even in roaming environments, i.e. when the client needs to connect to a domain that is administratively different from the one the user is affiliated with (scenario shown in Figure 10.1). This would require of the client to authenticate through and establish pair-wise keys with random wireless access points belonging to a domain that has no trust relationship with the client. Hence, a sane security practice dictates that the client s authentication credentials be protected from the initially untrusted access points and other intermediaries between the client and the authentication server until such trust relationships are established at a later point. To support such needs, EAP-TTLS specification defines the concept of a TTLS server. The TTLS server is a AAA server with which the client establishes the secure TLS channel and engages in EAP-TTLS exchange. The TTLS server may be able to authenticate the client. However, in many cases, the TTLS server is not the client s home AAA server and thus needs to refer to that server for client authentication. The generic architecture for EAP-TTLS signaling is shown in Figure 10.8. It should be noted that the model shows only logical entities; the TTLS AAA server and the home AAA server may be physically co-located in the same way that the TTLS server may be physically located at a NAS. On the other hand, there may be one or more AAA proxy servers between the NAS and the TTLS server and between the TTLS/AAAF server and the home AAA server. As with EAP-TLS, EAP-TTLS signaling between elements in the architecture can run over any protocol that is capable of encapsulating EAP messages, such as PPP or EAPOL on the client side of the NAS and RADIUS or Diameter on the server side of the NAS. The following assumptions apply for the interactions between the functional elements within the EAP-TTLS architecture:
Data Matrix ECC200 barcode library for .net
Using Barcode reader for .NET Control to read, scan read, scan image in .NET applications.
Barcode reader on .net
Using Barcode reader for .net vs 2010 Control to read, scan read, scan image in .net vs 2010 applications.
TTLS AAA server
Barcode barcode library for .net
using .net vs 2010 crystal toconnect bar code in web,windows application
Home AAA server
Secure data traffic (3) Secure TLS tunnel/key exchange (1) Client Authentication (2)
DataMatrix generating on .net
using todeploy ecc200 on web,windows application
Figure 10.8 EAP-TTLS architecture
Control 2d data matrix barcode image on visual basic
generate, create datamatrix 2d barcode none with projects
Latest Authentication Mechanisms, EAP Flavors
.NET ean-13 generatingin .net
using visual .net toaccess ean13 with web,windows application
Client-access point relationship: Generally, the client and the AP have no security relationship prior to the start of the EAP-TTLS negotiations. In fact, EAP-TTLS is designed to protect the client password or the challenge/response handshake between the client and AAA server from eavesdropping by untrusted APs (model in Figure 10.1). The secure channel between the two is established as a result of completed EAP-TTLS key management procedures. Client-NAS communications: Running EAP over PPP or EAPOL is the same as assuming that there is only a single hop between the client and the NAS. This means the NAS must be implemented at the first hop, which could be within a foreign network domain. Even though this seems a rather trivial point, it can pose a restriction on the application of EAP-TTLS. For instance, if a user connects to a hotel WLAN AP to get to its company s VPN gateway, the VPN gateway cannot act as a NAS, since it is at least 2 hops away from the client. This means we cannot use EAP-TTLS as an authentication mechanism between the VPN gateway and the client, unless we can design a new encapsulating protocol that can carry the EAP between the client and the VPN gateway. The other issue is that EAP-TTLS is designed to be initiated by a link layer protocol. Key exchange and NAS server relationships: One result of the EAP-TTLS is that the client and the NAS arrive at a secure channel that supports data encryption and authentication between the client and the NAS (as shown in Figure 10.8). However, the keying material required for this channel is actually first derived between the client and the TTLS server rather than between the client and the NAS. The client will arrive at the keying material as a result of the EAP-TTLS process, while the NAS is unaware of this process. The TTLS server must then transfer the keying material to the NAS over a AAA protocol. This means the level of the security assurance provided by the AAA protocol for this transport is crucial for the integrity of the whole process. RADIUS specifications only provide shared secret procedures to provide such assurance. This not only requires the existence of a pre-established security association between NAS and TTLS server, it may not need the level of required security for many networks. Diameter may provide better support in this respect. TTLS server HAAA server interactions: Note that EAP-TTLS only protects communications between client and TTLS server, which means when user credentials need to travel from TTLS server to home AAA server (typically over a AAA protocol), again that transit must be secured. For RADIUS this is typically provided in the form of shared secrets between adjacent AAA entities. This may be an inadequate level of protection. In Diameter, IPSec security associations can be used. AAA proxies: Whenever AAA proxies are implemented, a security association between adjacent servers may be required, unless the AAA protocol allows end-to-end security protection. AAAH server client relations: The home AAA server must be aware of the credentials that the client is going to present for authentication. For instance, if the client is going to use passwords, the home AAA server must be able to authenticate the client based on the password. The AAAH does not need to support EAP-TTLS, unless it also acts as TTLS server; it only needs to support the legacy client authentication mechanisms that are deployed. TTLS server client relations: The TTLS server is, on the other hand, not required to have a pre-established security association with the client. The secure channel between the TTLS server and client is established based on the server authenticating to the client using the server public key certificate and proof of private key possession. In rare cases, the client
Access gs1-128 for .net
using barcode encoding for .net control to generate, create ean/ucc 128 image in .net applications.
Barcode barcode library on .net
using .net vs 2010 touse bar code in web,windows application
Generate upc-a supplement 2 in
using barcode generating for web pages crystal control to generate, create upc barcodes image in web pages crystal applications.
Control code 39 image on visual
using barcode creation for vs .net control to generate, create bar code 39 image in vs .net applications. Web Service code-128c encodingfor .net
generate, create code 128 code set c none with .net projects
Build qr code 2d barcode in java
using java toconnect qrcode with web,windows application