Integral Equation and SMCG Method in .NET

Generating qr codes in .NET Integral Equation and SMCG Method
3.1 Integral Equation and SMCG Method
Insert qr code in .net
use .net vs 2010 qr code 2d barcode writer toincoporate qr-code with .net
.net Framework qr code 2d barcode reader with .net
Using Barcode scanner for VS .NET Control to read, scan read, scan image in VS .NET applications.
Barcode barcode library for .net
using .net vs 2010 toassign bar code for web,windows application
[-1- af(x',y') _ af(x,y)] ax' ax
Bar Code decoder with .net
Using Barcode scanner for VS .NET Control to read, scan read, scan image in VS .NET applications.
y') _
Control qr codes image for visual
use .net framework quick response code writer tocompose qr-codes on
+ i k1 b~1)(PR)I(n+1)(r') af(x', y') af(x, y)}
Control qr-code size with .net
qr barcode size on .net
ay' ax
Control qr barcode image with visual
use .net qr code printer tocompose qr-codes with visual basic
.NET Crystal 1d barcode creation for .net
generate, create linear none on .net projects
dX'dY'{a~1)(PR)F~n+1)(r') [af~';Y') (y _
Get gtin - 12 on .net
using barcode creation for visual studio .net crystal control to generate, create upc-a supplement 2 image in visual studio .net crystal applications.
af~X,Y) (y _
Code 3/9 barcode library in .net
generate, create barcode code39 none on .net projects
Code 128 Code Set B barcode library for .net
use .net framework crystal code 128 code set b creation topaint barcode 128 for .net
+ a~1)(PR)F~n+1)(r') [-(z - z') + af~~; y') (y _ y') + af~~ y) (x - x')] + a~1)(PR)F;t+1)(r') [ af~~ y) (z - z') - (x - x')]}
Insert code 93 extended on .net
generate, create uniform symbology specification code 93 none for .net projects
Linear Barcode barcode library in .net
generate, create linear barcode none with .net projects
m=l JpR>rd
QR Code barcode library for office excel
using excel spreadsheets toassign denso qr bar code in web,windows application
dx'dY'{-ik 1T1 1E2b~)(PR)
EAN / UCC - 13 integrated on visual basic
generate, create ean-13 none on visual basic projects
[zg]m I~n)(r')
Control pdf 417 data with vb
barcode pdf417 data for vb
PR ay
UPC - 13 barcode library on
generate, create ean 13 none for projects
[af(x,y) _ af(x"y')] ax ax'
Control barcode 3/9 image with .net
generate, create barcode 3 of 9 none for .net projects
-ik1T11E2I(n)(r')b~)(PR)[Z~]m [af(x,y) _ af(X"y')]}
Control uss code 128 data with .net c#
to deploy code 128 code set a and code 128b data, size, image with visual barcode sdk
E1 Y
Bar Code barcode library in java
generate, create bar code none with java projects
dX'dY'{a~)(PR) [zg]m F~n)(r')[
m=l JpR>rd
af(x,y)af(x';y')(y_y') ax ax
+ af~~ y) [af~:; y') (x - x') - (z - z')] - (y - y')] + a~)(PR)
F~n)(r') [af~~ y) (z -
+ af~~; y') af~; y) (x - x')
af~~; y') af~~ y) (y _ y') + (x _ x')] + a~)(PR)
[af~~Y) (x _ x') + af~;Y) (y +
y') - (z -
- _ Fn(r) 2
dX'd'{ -~'k 1T11-g2 I(n+l)(-') [af(x, y) E2 Y x r E1 ax
af(x', y')] ax'
_ ik1T11 E2 I(n+1) (r')g2 [af(X,y) _ af(x',y')]} E1 Y ay ay'
dX'dY'{G2F~n+1)(r') [_ af(x, y) af(x'; y') (y _ y')
ax ax ax'
(z - z')] _ (y _ y')]
+ af(x, y) [af(x" y') (x _ x') -
+ G2(R)F~n+l)(r') [af 1x , y) (z X
+ af(x', y') af1x, y) (X a~
- af(x',y') af(x,y) (y-y')+( x-x ')] ay' ax
+ G2(R)F(n+l)(r')
[af(X, y) (x _ x') ax
+ af(x, y) (y ay
y') -
(z - z')]}
dX'dY'{- ik l''71 E2b62)(PR)I~n+l)(r') [af(x,y) _ af(X';y')] El ax ax
IT]l- I y
E2 (n+l)(-')b(2)( PR ) [af(x, y) r 0 !=l
af(x', y')]} !=l'
{a62 )(PR)FJn+l) (r') [_ af(x,y) af(x';y') (y _ y') ax ax
_ ')
+ af(x, y)
[af(x" y') (x _ x') - (z - z,)] _ (y _ y')] ax'
(2)(p + ao R )F(n+l) (-') [af(X, y) (Z y r ax
+ af(x', y') af(x, y) (
ay' ay
_ ') x
_ af(x',y')af(x,y)( _ ')+( _ ')] + (2)( )F(n+l) (-') ay' ax y y x x ao PR n r .[ af x 1 , y) (x - x')
+ af(x, y) (y ay
y') - (z -
Z')] }
3.2 Numerical Results of Bistatic Scattering Coefficient The numerical simulation results are presented in terms of the bistatic scattering coefficient as normalized by the incident power. For an incident wave with a horizontal polarization (TE) we have lah(()s, cPs) and p~nc is given by (6.1.62) and (6.1.63) respectively. In medium 1, the co-polarized and crosspolarized scattered components of ~ for a = v (vertical polarization) and h (horizontal polarization) expressed in terms of the surface field components, Fx , Fy , Ix, I y, are respectively
1" =
dx'dy' exp( -ik/3') [{ Ix(x', y') cos()s cos cPs
+ Iy(x', y') cos()s sin cPs
' ,)af(x',y') . () - I x (X ,y ax' sm s
I (' ,)af(x',y') . ()} y x ,y ay' sm s
- T]{ Fx (x', y') sin cPs - F y(x', y') cos cPs}]
3.2 Numerical Results of Bistatic Scattering Coefficient
~ = ~:
dx'dy' exp( -ikjJ') [{Ix (x', y') sin <Ps - I y (x', y') cos <Ps} Fx (' ,y') 8f(x', y') sm () s . X 8x' (6.3.47 )
-I-. -I-. + T] {Fx (X " ) cos ()s cos cps + Fy cos (). CPs ,y s sm
_F(X'y,)8 f (x',y')s'n()}] y, 8y' 1 s
where {3' = x' sin ()s cos <Ps+Y' sin ()s sin <Ps+ f(x', y') cos ()s. The expressions for the transmitted waves are similar. The normalization is that the integration of reflected and transmitted power over solid angles gives unity for a lossless second medium. The rough surface has a 2-D Gaussian power spectrum given by
ly = lx 47Th
exp (_ K;l; _ K;l;) 4 4
We describe various accuracy tests using a 2-D dielectric rough surface. Then, we compute the solution of an electromagnetic wave scattering problem with up to 98,304 surface unknowns and up to 300 realizations. We first compare against matrix inversion (MI) for a small problem. In Figs. 6.3.1 and 6.3.2 the normalized bistatic scattering coefficient obtained by the MI is compared to the solutions obtained by the SMCG for co- and cross-polarized components, respectively, using a single surface realization. Surface lengths in the x and y directions are Lx = L y = 4.0'\ which gives an area of L 2 = 16,\2. The rms height is h = 0.2'\, with a correlation length of lx = ly = 1.0,\ and a relative permittivity of (3.0 + iO.2). The surface is sampled at 16 points per ,\2 to give 1536 surface unknowns. The neighborhood distance r d = 2.0'\. The incident angles for all illustrations in this paper are 0 0 ()i = 10 and <Pi = 0 . It can be observed that both polarized components of MI and SMCG curves almost completely overlap each other in Fig. 6.3.1.