eiKz Yp = K2 in Java

Integrating qr-codes in Java eiKz Yp = K2
eiKz Yp = K2
Render qr code jis x 0510 in java
generate, create qr code 2d barcode none with java projects
~ k 2 [e iKz 'iJ2 yp -
Barcode barcode library on java
generate, create bar code none for java projects
yp'iJ2 eiKz]
Barcode barcode library for java
Using Barcode decoder for Java Control to read, scan read, scan image in Java applications.
Control qr barcode data in .net c#
qr barcode data on visual c#.net
Use (6.1.31) and Green's theorem to transform the volume integral into three surface integrals over Bd, Be, and 5 00 (Fig. 6.1.2). The integral over Boo can be shown to vanish. iKZ It = eiKz1 (-l)P {_ dB (eiKZ oYp _ y oe ] K2 - k 2 j s" ar p ar 7"=b iKZ _ { dB [eiKzOYP _ YP oe ]} (6.1.32) } Sd OZ OZ Z=-ZI
An Asp.net Form quick response code creator in .net
using barcode printer for asp.net web service control to generate, create qr code image in asp.net web service applications.
QR Code ISO/IEC18004 writer for .net
using barcode creator for visual studio .net crystal control to generate, create qr code iso/iec18004 image in visual studio .net crystal applications.
Col1erent \v.we PropagcltiolJ
Control qr codes image on vb.net
generate, create qrcode none with visual basic projects
t----t-Ir-'7",..-.-jr-.--------t-........ z
Control pdf417 image for java
using java todeploy pdf 417 with asp.net web,windows application
Figure 6.1.2 Volume integration bounded by surface Sel, Se, m1(1 Soo'
Control data matrix barcodes image in java
use java datamatrix printer toattach data matrix ecc200 for java
The integral over Se is
Control ean / ucc - 14 data on java
ucc.ean - 128 data with java
iKZ r dS[eiKzOYP _ YP oeor ] 1.=b = -47fi (K is" or
Control qr image with java
generate, create qr code 2d barcode none in java projects
k 2 )L p(k, Klb)
Control ean 128 image with java
generate, create ean 128 none in java projects
4-State Customer Barcode integration in java
using barcode generation for java control to generate, create usps intelligent mail image in java applications.
Control upc-a data in word documents
to make universal product code version a and gs1 - 12 data, size, image with word barcode sdk
Lp(k, Klb) = - (K2 _ k 2) [~~h~(kb)jp(Kb) - Khp(kb)j;(Kb)]
Windows Forms Crystal pdf 417 integrating in visual c#
using barcode development for winforms crystal control to generate, create pdf 417 image in winforms crystal applications.
Access ean 13 with .net c#
using vs .net todisplay ean13+5 on asp.net web,windows application
For the surface integral over Sd, the following Kasterin's representation [Waterman and Truell, 1961 J can be used.
.net Vs 2010 code 128 code set b decoder with .net
Using Barcode recognizer for visual .net Control to read, scan read, scan image in visual .net applications.
Yp = hp(kr)Pp(cosB) = (-i)PPp C~~) ho(kr)
SQL Reporting Service 1d barcode integrated on .net
use reporting service 2008 linear encoding toget linear 1d barcode with .net
Control ecc200 data in excel spreadsheets
data matrix barcodes data on excel spreadsheets
Control pdf417 size with vb
pdf-417 2d barcode size on visual basic.net
i Sri
r dS [eiK Zoyp _ Yp oeiK Z]
{)z {)z
e-iK Zt ( -i)P+ 1 (X) P dP{
[!..- _iK] P (-!:-!..-) eik~} {)z ~k {)z Vp2 + z2
27f~'p+l (k + K) e -iKzt+ikzt k2
(6136) ..
Substituting (6.1.33) and (6.1.36) into (6.1.32) gives
2 '( ')P ikz t 7f~ -~ _e_ (K - k) k2
+ 47f(-i)P L
(k Klb) eiKzt
To evaluate [2 of (6.1.30), we note that the volume of integration in (6.1.30) consists of the half-space Z2 > 0 minus a sphere of radius b centered at the point 1"1. We have seen that for 0 :::; f :::; 0.4, g(r2 - 1"1) - 1 is practically zero for 11"2 - 1"11 larger than a few b's. If the point 1"1 is at least several diameters deep in the scattering medium (thus ignoring boundary layer effects), the volume of integration in (6.1.30) can be extended to infinite space. Thus, letting 1" = 1"2 - 1"1 in (6.1.30) and making the above assumption give (6.1.38) where (6.1.39) Substituting [ = h
+ [2
in (6.1.26), we have
[( _1)m
a!f,<!"f)e iKz1 =
no 1'mv
vl- m, nlp)a(v, n,p)TSM)a!f,~M)
+( _1)m+1
L a(m, vl- m, nlp,p p
+ Mp(k, I<lb)
. { (I< _ k)k2
211'i( _i)Peikz
+ 411'( _i)Pe,Kz
Lp(k, I<lb)
+ eikzla~~)
There are two kinds of wave dependences in (6.1.40) as characterized by their respective phase terms. One type of term has a exp( ikz 1 ) dependence corresponding to waves traveling with the propagation constant of the incident wave. The other type of term has a exp( iI< zI) dependence corresponding to waves travelling with the propagation constant of the effective medium. The terms with propagation constant k should balance each other, giving the generalized EwaldOseen extinction theorem. The medium generates a wave that extinguishes the original incident wave. Balancing the terms with propagation constant I< gives the generalized Lorentz-Lorenz law. These laws were derived for the case of point dipoles in Born and Wolf [1975]. In the treatment here, the Ewald-Oseen extinction theorem and Lorentz-Lorenz law are generalized to the use of finite-size spheres that give scattering attenuation of the coherent wave. The generalized Lorentz-Lorenz law is, on balancing eiKz1 terms in
1.1 Collerent Wave Propagation
(6.1.40) and replacing (/1, v)
(m, n),
o,:~M) = L no 'YJln
n 'YJlV
[( -l)Jl
L o,(it, nl- /1, vlp)o,(n, v,p)T2tJ)o,:~M)
+ (-1)"+ l ~ a(l', nl . 47r( -i)p [Lp(k, Klb)
1', vip, P - 1)b(n, v, P
+ Mp(k, Klb)]
for /1 = l. Equation (6.1.410,) is the result of starting with (6.1.180,). If we start with (6.1.18b) and use similar derivation, we get
o,:~N) = L no 'Yw
t [(
L 0,(/1, nl-IL, vlp,p p
+ (-1)" ~ a(l', nl . 47r( -i)P [Lp(k, Klb)
1', vip)a(n, v, P
)T~N) a~~N)]
+ Mp(k, Klb)J
The generalized Ewald-Oseen extinction theorem is obtained by balancing the exp(ikzt} terms in (6.1.20).
1 v 47r(2v + 1)-2 z <5Jll
+ no L.,.. (-1)
"P+/l 'YIn (27ri) i P 'Ylv (I{ _ k)k2
(M) x { Tn o, E(M) 0,(/1, n I - IL, vlp)o, (v, p n, ) ln
(N) E(N) _ - Tn o,l n o,(IL, nl- /1, v!p,p - l)b(n, v,p) } - 0
If we start with (6.1.18b) and use similar derivation, we get
P vi47r (2v + 1)2z v UJll + no ,,( -1 )P+Jl -'YIn (K _ k)k 2 1 ~ (27ri) i L.,..
n ,p
X { -
T~M) o,~~M) o,(IL, nl
/1, vip, p - 1)b(n, v, p)
(N) ( )( + Tn o, E(N) aIL, .n I - /1, v Ipan, v, p)} - 0 ln
a (n, v,p)
_ (2v
+ l)n(n + 1) 'v-n+PA( ) 2v(v + 1) z n, v,p
(6.1.430,) (6.1.43b)
__ (2v + l)n(n + 1) .v-n+PB( ) b( n,v,p) 2v(v+ 1) z n,v,p
A(n, v,p)
B(n, v,p) =
+ 1~( 2v+ 1) [2v(v + 1)(2v + 1) + (v + 1)(n + v . (n + p - v + 1) - v(n + v + P + 2)(v + p - n + 1)] v(v + 1) + n(n + 1) - p(p + 1)