2.2 Numerical Procedure of Discrete Ordinate Method
Gs1 Datamatrix Barcode barcode library with .netgenerate, create gs1 datamatrix barcode none with .net projects
metry relations exist for phase functions such that (8.2.35) and (8.2.36) Thus (8.2.37) denotes the forward scattering phase function matrix and (8.2.38) denotes the backward-scattering phase function matrix. We also define diagonal matrices Ii and ~ containing the j.li'S and the ai's. They are both N x N diagonal matrices.
Visual .net data matrix barcode reader in .netUsing Barcode reader for .net vs 2010 Control to read, scan read, scan image in .net vs 2010 applications.
j.ll
decoding barcode for .netUsing Barcode recognizer for .NET Control to read, scan read, scan image in .NET applications.
j.l2
Barcode implementation for .netusing barcode printer for visual studio .net control to generate, create barcode image in visual studio .net applications.
0 (8.2.39)
Control data matrix image for .net c#use vs .net datamatrix 2d barcode integrated toassign data matrix barcodes in visual c#
0 (8.2.40)
Control gs1 datamatrix barcode image with .netusing barcode encoding for asp.net aspx control to generate, create gs1 datamatrix barcode image in asp.net aspx applications.
Also, let f3 uUl f3ud' !JdUl and !Jdd represent the source terms on the right hand sides of (8.2.19a)2 and (8.2.19b). They are N x 1 column vectors
Po(Jll,l) r(l)R Jll 0
.net Framework Crystal qr code generating in .netusing vs .net crystal tobuild quick response code on asp.net web,windows application
po (Jl2,l)
Create 2d matrix barcode on .netuse .net framework 2d matrix barcode integrating toadd 2d barcode with .net
11-2
Attach barcode standards 128 on .netuse vs .net crystal code 128a development toassign code 128c for .net
r(l )Fo
Bar Code barcode library for .netgenerate, create barcode none with .net projects
f3 uu =
USPS POSTNET Barcode barcode library with .netusing barcode implement for visual studio .net crystal control to generate, create postnet 3 of 5 image in visual studio .net crystal applications.
(8.2.41)
8 SOLUTION TECHNIQUES OF RADIATIVE TRANSFER THEORY
European Article Number 13 implementation in visual basic.netusing barcode encoder for .net control to generate, create ean13+2 image in .net applications.
po(1l1,-I) F.
PO(1l2,-I) F. 112 0
/3ud
(8.2.42)
Control code 128 barcode image in .netusing .net winforms toconnect code 128a in asp.net web,windows application
f3du =
Use ean13+5 for javausing java touse gs1 - 13 in asp.net web,windows application
(8.2.43)
(8.2.44)
pO(-IlN,-I) F. fiN 0
Also the reflectivity matrix is N x N and is
r(JLI)
(8.2.45)
r(JLN)
Then in matrix notation, (8.2.27) and (8.2.28) become
dI;;T) = _ Ii-I Iu(T)
+ Ii-I pUu aIu(T) + Ii-I pUd aId(T)
+ /3ud + f3dd
+ /3uu
_ dXd(T) dT
T e-(T+2 d)
(8.2.46)
Ii-I
Id(T)
+ /i-I plu a Iu(T) + /l-I pdd a Id(T)
+ f3du
e-(T+2 Td)
(8.2.47)
(8.2.48)
and the boundary conditions in matrix form are
2.2 Numerical Procedure of Discrete Ordinate Method
I u (7 = -7d) = 'if. I u (7 = -7d)
(8.2.49)
Solutions of (8.2.46) and (8.2.47) consist of homogeneous solutions and particular solutions. For homogeneous solution, we try
I u = I ua eaT I d = Ida eaT
(8.2.50a) (8.2.50b)
Substituting (8.2.50a) and (8.2.50b) into (8.2.46) and (8.2.47) gives
+aIua + Ii-II ua = /i-I. F a' I ua + /i-I. B . a Ida (8.2.51a) -aIda + 1i-IIda = /i-I. B . a' I ua + /i-I. F . a Ida (8.2.51b)
Adding (8.2.51a) and (8.2.51b) gives
a/i (fua - Ida) = A (I ua + Ida)
where
(8.2.52) (8.2.53)
A=-I+F a+B a
where 1 is N x N unit matrix. Similarly, taking the difference of (8.2.51a) and (8.2.51b) gives
ali (I ua + Ida)
where
W . (I ua
- Ida)
(8.2.54)
(8.2.55)
W=-I+F a-B a
From (8.2.52) and (8.2.54), we have
a/i (Iua + Ida)
so that
W ./i-I . A . (Iua + Ida)
(/i-I. W . /i-I. A - a 2 . (I ua + Ida) )
2 2 2 al,a2"" ,aN
(8.2.56)
Thus we have eigenvalue problem for a 2 . It is an N x N eigenvalue problem for a 2 so that there are N values of a 2 Let I be the eigenvector associated with a , that is,
[/i-I. W . /i-I. A - a~] . I al
(8.2.57)
l = 1,2, ... , N. Then al and -al will both be eigenvalues of (8.2.51a)(8.2.51b) with corresponding eigenvectors
(1 + ~l Ji-
A) . I
(8.2.58)
8 SOLUTION TECHNIQUES OF RADIATIVE TRANSFER THEORY
1( Ida = 2 1 -
1 =-1 A (};l J.L
=) .I
(8.2.59)
(};l,
I 1 ua = 2
(};l
( 1--11. A 1 =-1 r
1 ( 1 =-1 Ida. = 2 1 + (};l J.L A
=) I =) -
(8.2.60) (8.2.61)
(};l
-(};l.
We also have 2N arbitrary constants with PI corresponding to eigenvalue and with P- 1 corresponding to eigenvalue -(};/. The homogeneous solution is a linear combination of these 2N eigenvectors.
1= 1 ~ [ ( 1 + (};l,T 1 . A . I PI
=) -
al e
(1 - ~l/i-l A) .1 't: ~ ~t [11 (1- ~,li-I A) .'to, + (1 + ~ -1 .
+ P-l
. P-l
al e-a!(T+Td)]
(8.2.62a)
eO" (8.2.62b)
A) . I
al e-al(T+Td)]
We next determine particular solutions of (8.2.36)-(8.2.37). The first set is
1 uu
e-(T+ 2Td)
(8.2.63a) (8.2.63b)
I d = Idu e-(T+2Td)
Putting (8.2.63a) and (8.2.63b) into (8.2.46) and (8.2.47) give the equations
- Iuu =
du =
_/i-I. I uu + /i-I. F . a I uu + /i-I. B . a' I du + lJuu _Ji-l .I du + /i-I. B . a' I uu + /i-I. F a' Ldu + lJdu
I u = Iud e I d = I dd e T T
(8.2.64a) (8.2.64b) (8.2.65a) (8.2.65b)
The second set is
where
obey the equations
Iud =
-Idd
-1-1=--1=--Ji- . Iud + Ji- . F a' Iud + Ji- . B . a' Idd + f3ud (8.2.66a) -1 === -Ji- .- + TC1 B . a - + - 1 F . a' - + -f3dd (8.2.66b) Idd . Iud Ji- . Idd
2.3 Active Remote Sensing: Oblique Incidence
Thus the total solution is
I u = I~ + I uu e-(T+2 T + Iud eT d) (8.2.67a) I d= + I du e-(T+2Td) + I dd eT (8.2.67b) To determine p" and P-I, l = 1, ... , N, we impose the boundary conditions (8.2.48)-(8.2.49) at 7 = 0 and 7 = -7d. For 7 = 0, these give
1Jl =) '1 {(1- a1 --1 A Icx1+P-I (1 --1 A . 2~ PI t:7' l+ i1 =) ICXle-CX1Td } al
and at
+ I du e 1'0 + I dd = 0 = -7d, the boundary condition gives
- 2Td
(8.2.68a)
1;-'1'2 ;r { PI (1 + al Jl+ I uu e- Td
=) - + P-I (1 - . =) -CX1 } Icx/e-CX1Td Ji.
1 - al
+ Iud e- Td
[~t {p, (1- ~, /i-I
+ P_ I
(1 + ~l
jl-1 .
A) T eA) .Icx,}+ Idu e-Td + Idd e-Td ]
a, a ",
(8.2.68b)
Equations (8.2.68a) and (8.2.68b) provide 2N equations for the 2N unknowns
P1 , P2, ... , PN , P- 1 , P- 2, ... , P-N.
2.3 Active Remote Sensing: Oblique Incidence
For the case of an incident wave that is obliquely incident on the layer of scatterers, the radiative transfer equations become
jL ~; (7, jL, 1 = - I u (7, jL, 1
2 djL'
d1>' [Pn (jL, 1>; jL', 1>')Iu (7, jL', 1>')
(8.2.69a)
+ Pn(jL, 1>; -jL', 1>')Id(7, jL', q/)] -jL
~: (7, jL, 1 = -
I d(7, jL, 1
2 djL'
d1>' [Pn( -jL, 1>; jL', 1>')Iu(7, jL', 1>')
(8.2.69b) (8.2.70a)
+ Pn(-jL, 1>; -jL', 1>')Id(7, jL', 1>')]