Numerical Procedure of Discrete Ordinate Method in .NET

Connect Data Matrix barcode in .NET Numerical Procedure of Discrete Ordinate Method
2.2 Numerical Procedure of Discrete Ordinate Method
Gs1 Datamatrix Barcode barcode library with .net
generate, create gs1 datamatrix barcode none with .net projects
metry relations exist for phase functions such that (8.2.35) and (8.2.36) Thus (8.2.37) denotes the forward scattering phase function matrix and (8.2.38) denotes the backward-scattering phase function matrix. We also define diagonal matrices Ii and ~ containing the j.li'S and the ai's. They are both N x N diagonal matrices.
Visual .net data matrix barcode reader in .net
Using Barcode reader for .net vs 2010 Control to read, scan read, scan image in .net vs 2010 applications.
j.ll
decoding barcode for .net
Using Barcode recognizer for .NET Control to read, scan read, scan image in .NET applications.
j.l2
Barcode implementation for .net
using barcode printer for visual studio .net control to generate, create barcode image in visual studio .net applications.
0 (8.2.39)
Control data matrix image for .net c#
use vs .net datamatrix 2d barcode integrated toassign data matrix barcodes in visual c#
0 (8.2.40)
Control gs1 datamatrix barcode image with .net
using barcode encoding for asp.net aspx control to generate, create gs1 datamatrix barcode image in asp.net aspx applications.
Also, let f3 uUl f3ud' !JdUl and !Jdd represent the source terms on the right hand sides of (8.2.19a)2 and (8.2.19b). They are N x 1 column vectors
Control data matrix ecc200 data with visual basic
datamatrix data with visual basic.net
Po(Jll,l) r(l)R Jll 0
.net Framework Crystal qr code generating in .net
using vs .net crystal tobuild quick response code on asp.net web,windows application
po (Jl2,l)
Create 2d matrix barcode on .net
use .net framework 2d matrix barcode integrating toadd 2d barcode with .net
11-2
Attach barcode standards 128 on .net
use vs .net crystal code 128a development toassign code 128c for .net
r(l )Fo
Bar Code barcode library for .net
generate, create barcode none with .net projects
f3 uu =
USPS POSTNET Barcode barcode library with .net
using barcode implement for visual studio .net crystal control to generate, create postnet 3 of 5 image in visual studio .net crystal applications.
(8.2.41)
Control bar code 39 size on word
code-39 size with word
8 SOLUTION TECHNIQUES OF RADIATIVE TRANSFER THEORY
European Article Number 13 implementation in visual basic.net
using barcode encoder for .net control to generate, create ean13+2 image in .net applications.
po(1l1,-I) F.
Control pdf-417 2d barcode data with vb
pdf417 2d barcode data on vb.net
PO(1l2,-I) F. 112 0
Control pdf417 data in word documents
barcode pdf417 data on word
/3ud
Control ucc ean 128 data in java
ean 128 barcode data in java
(8.2.42)
Control code 128 barcode image in .net
using .net winforms toconnect code 128a in asp.net web,windows application
f3du =
Use ean13+5 for java
using java touse gs1 - 13 in asp.net web,windows application
(8.2.43)
(8.2.44)
pO(-IlN,-I) F. fiN 0
Also the reflectivity matrix is N x N and is
r(JLI)
(8.2.45)
r(JLN)
Then in matrix notation, (8.2.27) and (8.2.28) become
dI;;T) = _ Ii-I Iu(T)
+ Ii-I pUu aIu(T) + Ii-I pUd aId(T)
+ /3ud + f3dd
+ /3uu
_ dXd(T) dT
T e-(T+2 d)
(8.2.46)
Ii-I
Id(T)
+ /i-I plu a Iu(T) + /l-I pdd a Id(T)
+ f3du
e-(T+2 Td)
(8.2.47)
(8.2.48)
and the boundary conditions in matrix form are
2.2 Numerical Procedure of Discrete Ordinate Method
I u (7 = -7d) = 'if. I u (7 = -7d)
(8.2.49)
Solutions of (8.2.46) and (8.2.47) consist of homogeneous solutions and particular solutions. For homogeneous solution, we try
I u = I ua eaT I d = Ida eaT
(8.2.50a) (8.2.50b)
Substituting (8.2.50a) and (8.2.50b) into (8.2.46) and (8.2.47) gives
+aIua + Ii-II ua = /i-I. F a' I ua + /i-I. B . a Ida (8.2.51a) -aIda + 1i-IIda = /i-I. B . a' I ua + /i-I. F . a Ida (8.2.51b)
Adding (8.2.51a) and (8.2.51b) gives
a/i (fua - Ida) = A (I ua + Ida)
where
(8.2.52) (8.2.53)
A=-I+F a+B a
where 1 is N x N unit matrix. Similarly, taking the difference of (8.2.51a) and (8.2.51b) gives
ali (I ua + Ida)
where
W . (I ua
- Ida)
(8.2.54)
(8.2.55)
W=-I+F a-B a
From (8.2.52) and (8.2.54), we have
a/i (Iua + Ida)
so that
W ./i-I . A . (Iua + Ida)
(/i-I. W . /i-I. A - a 2 . (I ua + Ida) )
2 2 2 al,a2"" ,aN
(8.2.56)
Thus we have eigenvalue problem for a 2 . It is an N x N eigenvalue problem for a 2 so that there are N values of a 2 Let I be the eigenvector associated with a , that is,
[/i-I. W . /i-I. A - a~] . I al
(8.2.57)
l = 1,2, ... , N. Then al and -al will both be eigenvalues of (8.2.51a)(8.2.51b) with corresponding eigenvectors
(1 + ~l Ji-
A) . I
(8.2.58)
8 SOLUTION TECHNIQUES OF RADIATIVE TRANSFER THEORY
1( Ida = 2 1 -
1 =-1 A (};l J.L
=) .I
(8.2.59)
(};l,
I 1 ua = 2
(};l
( 1--11. A 1 =-1 r
1 ( 1 =-1 Ida. = 2 1 + (};l J.L A
=) I =) -
(8.2.60) (8.2.61)
(};l
-(};l.
We also have 2N arbitrary constants with PI corresponding to eigenvalue and with P- 1 corresponding to eigenvalue -(};/. The homogeneous solution is a linear combination of these 2N eigenvectors.
1= 1 ~ [ ( 1 + (};l,T 1 . A . I PI
=) -
al e
(1 - ~l/i-l A) .1 't: ~ ~t [11 (1- ~,li-I A) .'to, + (1 + ~ -1 .
+ P-l
. P-l
al e-a!(T+Td)]
(8.2.62a)
eO" (8.2.62b)
A) . I
al e-al(T+Td)]
We next determine particular solutions of (8.2.36)-(8.2.37). The first set is
1 uu
e-(T+ 2Td)
(8.2.63a) (8.2.63b)
I d = Idu e-(T+2Td)
Putting (8.2.63a) and (8.2.63b) into (8.2.46) and (8.2.47) give the equations
- Iuu =
du =
_/i-I. I uu + /i-I. F . a I uu + /i-I. B . a' I du + lJuu _Ji-l .I du + /i-I. B . a' I uu + /i-I. F a' Ldu + lJdu
I u = Iud e I d = I dd e T T
(8.2.64a) (8.2.64b) (8.2.65a) (8.2.65b)
The second set is
where
obey the equations
Iud =
-Idd
-1-1=--1=--Ji- . Iud + Ji- . F a' Iud + Ji- . B . a' Idd + f3ud (8.2.66a) -1 === -Ji- .- + TC1 B . a - + - 1 F . a' - + -f3dd (8.2.66b) Idd . Iud Ji- . Idd
2.3 Active Remote Sensing: Oblique Incidence
Thus the total solution is
I u = I~ + I uu e-(T+2 T + Iud eT d) (8.2.67a) I d= + I du e-(T+2Td) + I dd eT (8.2.67b) To determine p" and P-I, l = 1, ... , N, we impose the boundary conditions (8.2.48)-(8.2.49) at 7 = 0 and 7 = -7d. For 7 = 0, these give
1Jl =) '1 {(1- a1 --1 A Icx1+P-I (1 --1 A . 2~ PI t:7' l+ i1 =) ICXle-CX1Td } al
and at
+ I du e 1'0 + I dd = 0 = -7d, the boundary condition gives
- 2Td
(8.2.68a)
1;-'1'2 ;r { PI (1 + al Jl+ I uu e- Td
=) - + P-I (1 - . =) -CX1 } Icx/e-CX1Td Ji.
1 - al
+ Iud e- Td
[~t {p, (1- ~, /i-I
+ P_ I
(1 + ~l
jl-1 .
A) T eA) .Icx,}+ Idu e-Td + Idd e-Td ]
a, a ",
(8.2.68b)
Equations (8.2.68a) and (8.2.68b) provide 2N equations for the 2N unknowns
P1 , P2, ... , PN , P- 1 , P- 2, ... , P-N.
2.3 Active Remote Sensing: Oblique Incidence
For the case of an incident wave that is obliquely incident on the layer of scatterers, the radiative transfer equations become
jL ~; (7, jL, 1 = - I u (7, jL, 1
2 djL'
d1>' [Pn (jL, 1>; jL', 1>')Iu (7, jL', 1>')
(8.2.69a)
+ Pn(jL, 1>; -jL', 1>')Id(7, jL', q/)] -jL
~: (7, jL, 1 = -
I d(7, jL, 1
2 djL'
d1>' [Pn( -jL, 1>; jL', 1>')Iu(7, jL', 1>')
(8.2.69b) (8.2.70a)
+ Pn(-jL, 1>; -jL', 1>')Id(7, jL', 1>')]